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Abstract

We develop the theory of Abelian functions defined using a tetragonal curve of
genus six, discussing in detail the cyclic curve y4 = x5 + λ4x

4 + λ3x
3 + λ2x

2 +
λ1x + λ0. We construct Abelian functions using the multivariate σ -function
associated with the curve, generalizing the theory of the Weierstrass ℘-function.
We demonstrate that such functions can give a solution to the KP-equation,
outlining how a general class of solutions could be generated using a wider
class of curves. We also present the associated partial differential equations
satisfied by the functions, the solution of the Jacobi inversion problem, a power
series expansion for σ(u) and a new addition formula.

PACS numbers: 02.30.Jr, 02.40.Tk, 02.70.Wz, 02.30.−f, 02.40.−k
Mathematics Subject Classification: 14H40, 14H42, 15A15, 33E05

1. Introduction

Recent times have seen a revival of interest in the theory of Abelian (multiply periodic)
functions associated with algebraic curves. This topic can be dated back to the Weierstrass
theory of elliptic functions which we use as a model. Let σ(u) and ℘(u) be the standard
Weierstrass functions (see for example [1]). The ℘-function can be used to parametrize an
elliptic curve y2 = 4x3 − g2x − g3, and satisfies the following well-known formulae:

℘(u) = − d2

du2
log σ(u), (1)

(℘ ′(u))2 = 4℘(u)3 − g2℘(u) − g3, (2)

℘ ′′(u) = 6℘(u)2 − 1

2
g2. (3)

The σ -function satisfies a power series expansion,

σ(u) = u − 1

240
g2u

5 − 1

840
g3u

7 − 1

1 61 280
g2

2u
9 − 1

22 17 600
g2g3u

11 + · · · , (4)
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and a two-term addition formula,

−σ(u + v)σ (u − v)

σ (u)2σ(v)2
= ℘(u) − ℘(v). (5)

Taking logarithmic derivatives of this will give the standard addition formula for ℘(u). This
paper will generalize equations (1)–(5) for a previously unconsidered class of functions.

The study of Abelian functions associated with the simplest hyperelliptic curves (those of
genus two) goes back to the start of the 20th century. Klein’s generalization of the Weierstrass
theory is described in Baker’s classic texts [2, 3], while Buchstaber et al [4] give a more
recent study of the general hyperelliptic case. Further generalization has been structured by
considering (with the notation of [5]) classes of (n, s)-curves. These are curves with the
equation

yn − xs −
∑
α,β

μ[ns−αn−βs]x
αyβ μj constants, (6)

where α, β ∈ Z with α ∈ (0, s − 1), β ∈ (0, n − 1) and αn + βs < ns. The cyclic subset
of such a class of curves is generated by setting β = 0. We suppose that (n, s) are coprime,
in which case the curves have genus g = 1

2 (n − 1)(s − 1) and a unique branch point ∞ at
infinity.

In the last few years a good deal of progress has been made on the theory of Abelian
functions associated with trigonal curves (those with n = 3). The σ -function realization of
these functions was developed first in [6, 7], with the two canonical cases studied in detail in
[8, 9].

In this paper we consider the next logical class (those with n = 4). These are the
tetragonal curves, and we have started by looking at the curves of lowest genus and simplified
by considering the cyclic subclass. We construct the multivariate σ -function associated with
this curve and use it to define and analyse classes of Abelian functions, generalizing the theory
of the Weierstrass ℘-function. A key component of our work is the construction of a series
expansion for the σ -function. This technique was first developed for the trigonal case in [10];
however, the computation involved for the present expansion is significantly greater. The latter
computations are performed in parallel with the use of the Distributed Maple software (see
[11, 12]).

The applications of Abelian functions to integrable systems and soliton theory have been
the topic of research for some time (see for example [13, 14]). It is well known that the elliptic
℘-function could be used to construct a solution to the KdV equation. Similar solutions to
nonlinear equations have been derived from higher genus curves, for example in [7] where
the function ℘33 associated with the (3,4)-curve was shown to be a solution of the Boussinesq
equation. This has suggested a more general link between such functions and the integrable
KP hierarchy. We demonstrate how the Abelian functions we define can give a solution to the
KP-equation, outlining how similar solutions will also be found from any (4, s)-curve.

This paper is organized as follows. We give the basic properties of the curve we consider
in section 2, including explicit constructions of the differentials on the curve and a set of
weights that render the key equations homogeneous. Then in sections 3 and 4 we define the σ -
function and Abelian functions associated with this curve. Section 5 discusses a key theorem
satisfied by the ℘-functions which we use to give a solution to the Jacobi inversion problem. In
section 6 we derive some properties of the σ -function including the series expansion, while
in section 7 we use this to generate relations between the Abelian functions. Section 8
demonstrates how solutions to the KP-equation can be constructed from Abelian functions.
Finally in section 9 we give the derivation of a two-term addition formula.
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2. The purely tetragonal curves

We will investigate Abelian functions associated with a tetragonal curve. The simplest general
tetragonal curve is, in the notation of the (n, s)-curves, a (4, 5)-curve. It is given by g(x, y) = 0
where

g(x, y) = y4 + (μ1x + μ5)y
3 + (μ2x

2 + μ6x + μ10)y
2

+ (μ3x
3 + μ7x

2 + μ11x + μ15)y

− (x5 + μ4x
4 + μ8x

3 + μ12x
2 + μ16x + μ20) (μj constants).

In this paper we further simplify by considering the cyclic subclass of this family. These are
the curves C, given by

C : f (x, y) = 0 (λj constants)

where

f (x, y) = y4 − (x5 + λ4x
4 + λ3x

3 + λ2x
2 + λ1x + λ0). (7)

The curve C has genus g = 6, the unique branch point ∞ at infinity and is referred to as
the purely tetragonal or strictly tetragonal curve. It contains an extra level of symmetry
demonstrated by the fact that it is invariant under

[ζ ] : (x, y) → (x, ζy), (8)

where ζ is a fourth root of unity.
For any (n, s)-curve we can define a set of weights for the variables of the theory, including

the curve constants, which render the equation homogeneous with respect to the weights. To
find these weights consider the mapping χ �→ tαχ χ̃ acting on all elements in the curve
equation. Define the weights as the constants αi that render the new equation homogeneous
with respect to t. The weights of x, y will then be determined up to a constant by nαy = sαx .
To keep with convention we let αx = −n and αy = −s so that they are the largest negative
integers satisfying this condition. The weights of the curve constants can then be chosen to
make the remainder of the equation homogeneous.

Definition 2.1. For the cyclic (4,5)-case we have

x y λ4 λ3 λ2 λ1 λ0

Weight −4 −5 −4 −8 −12 −16 −20

while in the general (4,5)-case the weights of the curve constants are given by their subscripts.
We refer to these as the Sato weights.

As we proceed through the paper we can use the approach of this mapping to conclude that
other elements in our theory must have definite weight. All the equations presented here are
homogeneous with respect to these weights.

Next we construct the standard basis of holomorphic differentials upon C:

du = (du1, . . . , du6), dui(x, y) = gi(x, y)

4y3
dx,

where
g1(x, y) = 1, g2(x, y) = x, g3(x, y) = y,

g4(x, y) = x2, g5(x, y) = xy, g6(x, y) = y2.
(9)

3
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Denote points in C
6 by u, for example, and their coordinates by (u1, u2, . . . , u6). We know

from the general theory that any point u ∈ C
6 can be expressed as

u = (u1, u2, u3, u4, u5, u6) =
6∑

i=1

∫ Pi

∞
du,

where the Pi are six variable points upon C. Let 	 denote the lattice generated by the integrals
of the basis of holomorphic differentials along any closed paths in C. The manifold C

6/	 is
then the Jacobian variety of C, denoted by J . Let κ be the quotient map of modulo 	 over C:

κ : C
6 → C

6/	 = J.

Therefore 	 = κ−1((0, . . . , 0)). For k = 1, 2, . . . define A, the Abel map from the kth
symmetric product Symk(C) to J :

A : Symk(C) → J

(P1, . . . , Pk) �→
(∫ P1

∞
du + · · · +

∫ Pk

∞
du

)
(mod 	),

(10)

where the Pi are points upon C. Denote the image of the kth Abel map by W [k] and let

[−1](u1, . . . , u6) = (−u1, . . . ,−u6).

Define the kth standard theta subset (often referred to as the kth strata) by

�[k] = W [k] ∪ [−1]W [k].

When k = 1 the Abel map gives an embedding of the curve C upon which we define ξ as the
local parameter at the origin, A1(∞):

ξ = x− 1
n = x− 1

4 . (11)

We can then express the basis (9) with ξ and integrate to give

u1 = − 1
11ξ 11 + O(ξ 15) u3 = − 1

6ξ 6 + O(ξ 10) u5 = − 1
2ξ 2 + O(ξ 6)

u2 = − 1
7ξ 7 + O(ξ 11) u4 = − 1

3ξ 3 + O(ξ 7) u6 = −ξ + O(ξ 5).
(12)

The higher-order terms will contain the curve parameters λ = {λ0, . . . , λ4}.
Similarly to [7, 10] we could rewrite this using u6 as the local parameter.
Note that such calculations can be performed similarly for any (n, s)-curve, and that since

each element of du is homogeneous in Sato weight we can conclude that the ui have definite
Sato weight. Since the weight of ξ must be +1 from (11), we can define the weights of u
uniquely as below.

Definition 2.2. In the (4,5)-case we assign the following weights to u:

u1 u2 u3 u4 u5 u6

Weight +11 +7 +6 +3 +2 +1.

Remark 2.3. The weights of the variables coincide with the order of their zero at ∞. They
can also be calculated using the Weierstrass gap sequence, where the weights of u1, . . . , u6 are
the gap numbers and the weights of x and y are the negative of the first two non-gap numbers.

Definition 2.4. Let (x, y) and (z, w) be two variable points upon C. Then the two-form
((x, y), (z, w)) on C × C is a fundamental differential of the second kind if

4
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(1) It is symmetric: ((x, y), (z, w)) = ((z,w), (x, y)).
(2) The only pole of second order is along the diagonal of C × C (where x = z).
(3) It can be expanded in a power series as

((x, y), (z, w)) =
(

1

(ξ − ξ ′)2
+ O(1)

)
dξ dξ ′ (as (x, y) → (z, w)),

where ξ and ξ ′ are the local coordinates of (x, y) and (z, w).

We will construct Klein’s explicit realization of this in proposition 2.6 below.
First introduce dr, the basis of meromorphic differentials which have their only pole at

∞. These are determined modulo the space spanned by the du and can be expressed as

dr = (dr1, . . . , dr6), where drj (x, y) = hj (x, y)

4y3
dx. (13)

An explicit basis is constructed later in order to satisfy proposition 2.6.

Definition 2.5. Define the following meromorphic function on C × C as

�((x, y), (z, w)) = 1

4y3(x − z)
·

4∑
k=1

y4−k

[
f (z,w)

w4−k+1

]
w

,

where [ ]w means that we remove any terms which have negative powers with respect to w.

Proposition 2.6. The fundamental differential of the second kind can be expressed as

((x, y), (z, w)) = R((x, y), (z, w)) dx dz,

where

R((x, y), (z, w)) = ∂

∂z
�((x, y), (z, w)) +

6∑
j=1

duj (x, y)

dx
· drj (z, w)

dz
.

The polynomials hj (x, y) need to be chosen so that  is symmetric. This will lead to a
realization of  in the form

((x, y), (z, w)) = F((x, y), (z, w)) dx dz

(x − z)2fy(x, y)fw(x, y)
. (14)

Proof. The essential part of the proof is the same as in the lower genus cases (see [8] for
example). In this case, we explicitly determine the basis of meromorphic differentials (13) to
be given with

h1 = −y2(8x2λ4 + 11x3 + 5xλ3 + 2λ2), h2 = −y2(λ3 + 4xλ4 + 7x2),

h3 = −2xy(λ3 + 3x2 + 2xλ4), h4 = −3xy2, h5 = −2x2y, h6 = −x3.

The polynomial F in the realization (14) is found to be

F((x, y), (z, w)) = 4y3w3 + (3xz4 + z3λ3 + z3x2 + 2λ2z
2 + 3xλ3z

2

+ 4z3xλ4 + 4λ0 + λ1x + 2λ2xz + 3λ1z)y
2 + (2λ1z + 4λ2xz + 4λ0

+ 2λ1x + 4x2λ4z
2 + 2λ3x

2z + 2x3z2 + 2z3x2 + 2xλ3z
2)wy

+ (λ3x
3 + 4λ0 + 3λ1x + 2λ2x

2 + λ1z + x3z2 + 3x4z + 2λ2xz

+ 3λ3x
2z + 4λ4x

3z)w2. (15)

�

5
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3. Defining the σ-function

In this section we describe the multivariate σ -function associated with C, from which all
Abelian functions associated with C can be defined. This can be regarded as a generalization
of the Weierstrass σ -function with the main difference that there are now g = 6 variables:

σ = σ(u) = σ(u1, u2, u3, u4, u5, u6).

First we choose a basis of cycles (closed paths) upon the surface defined by C. We denote
them

αi, βj , 1 � i, j � 6,

and ensure they have intersection numbers

αi · αj = 0, βi · βj = 0, αi · βj = δij =
{

1 if i = j

0 if i �= j.

This allows us to define the following period matrices:

ω′ =
(∮

αk

du�

)
k,�=1,...,6

ω′′ =
(∮

βk

du�

)
k,�=1,...,6

η′ =
(∮

αk

dr�

)
k,�=1,...,6

η′′ =
(∮

βk

dr�

)
k,�=1,...,6

.

We combine these into

M =
(

ω′ ω′′

η′ η′′

)
,

which we know from classical results to satisfy

M

( −I6

I6

)T

M = 2π i

( −I6

I6

)
. (16)

This is the generalized Legendre equation (see [4], p 11). We also have that (ω′)−1ω′′ is
symmetric with

Im((ω′)−1ω′′) positive definite. (17)

We now define the multivariate σ -function associated with C. This can be constructed using
the multivariate θ -function (see for example [15]).

Definition 3.1. The Kleinian σ -function associated with C is

σ(u) = σ(u;M) = c exp

(
−1

2
uη′(ω′)−1uT

)
× θ [δ]((ω′)−1uT |(ω′)−1ω′′)

= c exp

(
−1

2
uη′(ω′)−1uT

)
×

∑
m∈Z6

exp

{
2π i

[
1

2
(m + δ′)T (ω′)−1ω′′(m + δ′)

+ (m + δ′)T ((ω′)−1uT + δ′′)
]}

,

where c is a constant dependent upon the curve parameters {λ0, λ1, λ2, λ3, λ4} and fixed later

(see remark 4). The matrix δ = [δ′

δ′′
]

is the θ -function characteristic which gives the Riemann

constant for C with respect to the base point ∞ and the period matrix [ω′, ω′′] (see [4],
pp 23–4).

6
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In this paper we give some of the most important properties of σ(u). For a more detailed
study of the construction and properties of the multivariate σ -function we refer the reader
to [4].

Lemma 3.2. Given u ∈ C
6, denote by u′ and u′′ the unique elements in R

6 such that

u = u′ω′ + u′′ω′′.

Let � represent a point on the period lattice

� = �′ω′ + �′′ω′′ ∈ 	.

For u,v ∈ C
6 and � ∈ 	, define L(u,v) and χ(�) as follows:

L(u,v) = uT (η′v′ + η′′v′′),
χ(�) = exp[π i(2(�′ T δ′′ − �′′ T δ′) + �′ T �′′)].

Then for all u ∈ C
6, � ∈ 	 the function σ(u) has the quasi-periodicity property

σ(u + �) = χ(�) exp

[
L

(
u +

�

2
, �

)]
· σ(u). (18)

Also for γ ∈ Sp(12, Z) we have

σ(u; γM) = σ(u;M). (19)

Proof. The quasi-periodicity property given in (18) is a classical result, first discussed in [2],
that was fundamental to the original definition of the multivariate σ -function. Equation (19)
is easily seen from the definition of σ(u), since γ corresponds to the choice of basis cycles
{αj , βj }6

j=1 which are used to define M. �

4. Classes of Abelian functions

Definition 4.1. Let M(u) be a meromorphic function of u ∈ C
6. Then M is an Abelian

function associated with C if

M(u + ω′nT + ω′′mT ) = M(u)

for all integer vectors n,m ∈ Z, wherever M is defined.

We now define a set of fundamental Abelian functions on J .

Definition 4.2. Define the 2-index Kleinian ℘-functions as

℘ij (u) = − ∂2

∂ui∂uj

log σ(u), i � j ∈ {1, . . . , 6}.

A short calculation shows these functions to have poles of order 2 when σ(u) = 0 and no
other singularities. We can check (using lemma 3.2) that

℘ij (u + �) = ℘ij (u), ∀ � ∈ 	.

Hence we can conclude these functions to be Abelian. Similar analysis will show their
derivatives to be Abelian also.

Definition 4.3. For n � 2 define n-index Kleinian ℘-functions as

℘i1,i2,...,in (u) = − ∂

∂ui1

∂

∂ui2

· · · ∂

∂uin

log σ(u), i1 � · · · � in ∈ {1, . . . , 6}.

7
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Remark 4.4.

(i) Compare with (1) and the elliptic case to see that we are defining a generalization of the
Weierstrass ℘-function and its derivatives.

(ii) This notation is compatible with the elliptic case, where we would now denote the
Weierstrass ℘-function as ℘11(u) and its first derivative ℘ ′ by ℘111(u).

(iii) The order of the indices is irrelevant. For simplicity we always use ascending numerical
order.

(iv) We are usually only referring to one vector of variables u. In these cases, for simplicity,
we write ℘ij instead of ℘ij (u).

We find in section 7 that the ℘-functions are not sufficient to construct a basis of the simplest
Abelian functions. Hence we also define a generalization of Baker’s Q-functions, which we
need to extend further than in the lower genus cases.

Definition 4.5. Define the operator �i as below. This is now known as Hirota’s bilinear
operator, although it was used much earlier by Baker in [3]:

�i = ∂

∂ui

− ∂

∂vi

.

It is then simple to check that an alternative, equivalent definition of the 2-index Kleinian
℘-functions is given by

℘ij (u) = − 1

2σ(u)2
�i�jσ(u)σ (v)

∣∣∣∣
v=u

i � j ∈ {1, . . . , 6}.

We extend this to define n-index Q-functions, for n even, by

Qi1,i2,...,in (u) = (−1)

2σ(u)2
�i1�i2 . . . �inσ (u)σ (v)

∣∣∣∣
v=u

where i1 � · · · � in ∈ {1, . . . , 6}.

We can show as above that these functions are also Abelian.

Remark 4.6.

(i) The subscripts of the ℘-functions denote differentiation

∂

∂uin+1
℘i1,i2,...,in = ℘i1,i2,...,in,in+1 ,

but this is not the case for the Q-functions. Here the indices refer to which Hirota operators
were used.

(ii) If we had applied the definition for n odd then it would have returned zero.
(iii) Note that both the ℘-functions and the Q-functions have poles when σ(u) = 0 and no

other singularities. The n-index ℘-functions have poles of order n, while the n-index
Q-function all have poles of order 2.

The 4-index Q-functions were first used by Baker, and in [8] it was shown that they could
be expressed using the Kleinian ℘-functions as

Qijk� = ℘ijk� − 2℘ij℘k� − 2℘ik℘j� − 2℘i�℘jk. (20)

8
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Proposition 4.7. The 6-index Q-functions can be written as

Qijklmn = ℘ijklmn − 2[(℘ij℘klmn + ℘ik℘jlmn + ℘il℘jkmn + ℘im℘jkln

+ ℘in℘jklm) + (℘jk℘ilmn + ℘jl℘ikmn + ℘jm℘ikln + ℘jn℘iklm)

+ (℘kl℘ijmn + ℘km℘ijln + ℘kn℘ijlm) + (℘lm℘ijkn + ℘ln℘ijkm)

+ ℘mn℘ijkl] + 4[(℘ij℘kl℘mn + ℘ij℘km℘ln + ℘ij℘kn℘lm)

+ (℘ik℘jl℘mn + ℘ik℘jm℘ln + ℘ik℘jn℘lm) + (℘il℘jk℘mn

+ ℘il℘jm℘kn + ℘il℘jn℘km) + (℘im℘jk℘ln + ℘im℘jl℘kn

+ ℘im℘jn℘kl) + (℘in℘jk℘lm + ℘in℘jl℘km + ℘in℘jm℘kl)]. (21)

Proof. Apply definitions 4.2 and 4.5 to reduce the equation to a sum of σ -derivatives. We
find that they all cancel (Maple is useful here). The structure of the sum was prompted by
considering the result for the 4-index Q-functions. �

Clearly (21) will specialize to give a set of simpler formulae such as

Qnnnnnn = ℘nnnnnn − 30℘nn℘nnnn + 60℘3
nn.

5. Expanding the Kleinian formula

This section is based upon the following theorem (originally by Klein). It is given for a
general curve as theorem 3.4 in [7]. From this theorem we are able to solve the Jacobi
inversion problem, as well as generate relations between the ℘-functions.

Theorem 5.1. Let {P1, . . . , P6} ∈ C6 be an arbitrary set of distinct points on C, and (z, w)

any point of this set. Then for an arbitrary point (x, y) and base point ∞ on C we have

6∑
i,j=1

℘ij

(∫ (x,y)

∞
du −

6∑
k=1

∫ Pk

∞
du

)
gi(x, y)gj (z,w) = F

(
(x, y), (z, w)

)
(x − z)2

. (22)

Here gi is the numerator of dui as given in (9), and F is the symmetric function appearing in
(15) as the numerator of the fundamental differential of the second kind.

We use our explicit calculation of the differentials to construct (22). We expand this as
one of the Pk tends to infinity to obtain a series expansion in terms of the local parameter ξ ,
given earlier in (11). It follows that each coefficient with respect to ξ must be zero for any
u ∈ J and some (z, w) on C. This gives us a potentially infinite sequence of equations starting
with the five given in appendix A. The first 14 have been calculated explicitly (using Maple)
and can be found online at [16].

Manipulating these equations. We follow the approach of the trigonal papers and manipulate
these equations using Maple. We first take the resultant of pairs of equations (eliminating the
variable w by choice) to give a new set of equations dependent on z and the ℘-functions. We
introduce the notation Res(a, b) to represent the resultant of equations (a) and (b).

These new equations are considerably longer than those obtained in the lower genus cases.
We need to combine them to give a polynomial of degree g − 1 = 5 in z. Such a polynomial
would have only five solutions but must be satisfied for all u (which has six variables). Hence
all the coefficients must be zero, giving us a set of relations between the ℘-functions. We
have the extra complication (compared to the trigonal cases) that none of the new equations

9
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has degree in z equal to g. Therefore, in this case, at least two rounds of elimination between
the equations will be required.

We find that Res(A.1, A.2) has degree 7 in z so we rearrange it to give an equation for z7.
Then since Res(A.1, A.3) and Res(A.1) and (A.5) have degree 8, we can repeatedly substitute
for z7 in both until we are left with two equations of degree 6 in z. Since these are very long
we do not print them here; however, they can be found online at [16] where we have labelled
them (T1) and (T2).

We next rearrange (T1) to give an equation for z6 and repeatedly substitute for z7 and z6

in the remaining equations until they are of degree 5 in z. The coefficients of such equations
must be zero, giving us relations between the ℘-functions. The smallest such relation has
3695 terms, with the others rising in size considerably. Unlike the trigonal cases these
cannot be easily separated to give expressions for individual ℘-functions. However, these are
implemented in the construction of the σ -function expansion (see section 6).

Jacobi inversion problem. Recall that the Jacobi inversion problem is, given a point u ∈ J , to
find the preimage of this point under the Abel map (10).

Theorem 5.2. Suppose we are given {u1, . . . , u6} = u ∈ J . Then we could solve the Jacobi
inversion problem explicitly using the equations derived from (A.1)–(A.5).

Proof. Consider either equation (T1) or (T2) defined in the discussion above. This is a
polynomial constructed from ℘-functions and the variable z. This equation has degree 6 in z

so denote by (z1, . . . , z6) the six zeros of the polynomial.
Next, rearrange (A.1) to give an equation for w2. Substitute this into (A.2) and multiply

all terms by ℘66 to give the following equation of degree 1 with respect to w:

0 = w
(
z℘66℘55 − 2z2℘66 − z℘66℘566 + ℘666z℘56 + ℘36℘666 + ℘66℘35

− z℘2
56 − ℘36℘56 − ℘66℘366

)
+ z2℘66℘45 − z2℘66℘466 + ℘56z

3

− z℘66℘266 − ℘56z℘26 + z℘66℘25 + ℘15℘66 − ℘666z
3 + ℘666℘46z

2

+ ℘666z℘26 − ℘166℘66 + ℘666℘16 − ℘56℘46z
2 − ℘56℘16. (23)

We could substitute each zi into (23) in turn and solve to find the corresponding wi . We can
therefore identify the set of points {(z1, w1), . . . , (z6, w6)} on the curve C which are the Abel
preimage of u. �

6. Deriving the properties of σ(u)

In this section, we derive some of the properties for σ(u) and use them to construct the Taylor
series expansion.

Lemma 6.1. The function σ(u) has zeroes of order 1 when u ∈ �[5]. Further, σ(u) �= 0 for
all other u.

Proof. This is a classical result which always holds for �[g−1] (see [2]). It can be concluded
from results on Riemann’s θ -function, from which σ(u) can be defined.

The first part can also be concluded explicitly from the results of the previous section. In
theorem 5.2 we discussed how the six roots of the polynomial (T2) gave us the Abel preimage
of u ∈ J . Now suppose that u is approaching �[5], implying one of these roots is approaching
infinity. We explicitly calculate the denominator of (T2) to be σ(u)16, using definition 4.3.
Therefore, we can conclude that when u descends to �[5] we must have σ(u) = 0. �

10
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Consider u ∈ �[5] which by definition we can express using points Pk on C as

u =
∫ P1

∞
du + · · · +

∫ P5

∞
du.

Use equations (12) to express u with five local parameters:

0 = u1 +
1

11
ξ 11

1 + · · · +
1

11
ξ 11

5 + O
(
ξ 15

1

)
+ · · · + O

(
ξ 15

5

)
,

...

0 = u6 + ξ1 + · · · + ξ5 + O
(
ξ 5

1

)
+ · · · + O

(
ξ 5

5

)
. (24)

Now consider the case when λ = 0. In this case equations (12) simplify to

u1 = − 1
11ξ 11, u2 = − 1

7ξ 7, u3 = − 1
6ξ 6, u4 = − 1

3ξ 3, u5 = − 1
2ξ 2, u6 = −ξ,

and hence the higher-order terms in equations (24) all reduce to zero. We can now take the
multivariate resultant of these six finite polynomials, eliminating the parameters ξ1, . . . , ξ5.
From the theory of resultants we are left with a polynomial, unique up to multiplication by a
non-vanishing holomorphic function, that must be zero for u ∈ �[5]. By lemma 6.1 we can
conclude this polynomial to be a multiple of σ(u).

In fact, this is just a specific case of the following stronger result for the σ -function.

Lemma 6.2. Define the canonical limit of the σ -function as the value of σ(u) in the case
when all the curve constants are zero. In this case the series expansion of σ(u) about
u = (0, 0, 0, 0, 0, 0) is given by a constant K multiplied by the Schur–Weierstrass polynomial
generated by (n, s).

Proof. The result was first stated in [17], with an alternative proof now available in [18]. �

For the (4, 5)-case we have the following Schur–Weierstrass polynomial:

SW4,5 = 1
83 82 528u15

6 + 1
336u8

6u
2
5u4 − 1

12u4
6u1 − 1

126u7
6u3u5 − 1

6u4u3u5u
4
6

− 1
72u3

4u
6
6 − 1

33 264u11
6 u2

5 + 1
27u6

5u
3
6 + 2

3u4u
3
5u3 − 2u2

4u6u3u5 − u2
2u6

− 2
9u3

5u3u
3
6 − u4u

2
3 + 1

12u4
4u

3
6 − 1

3 024u9
6u

2
4 − 1

756u7
6u

4
5 + 1

1 008u8
6u2

+ 1
3u4

5u2 + 1
3u3

6u
2
3 − 1

9u4u
6
5 + 1

3 99 168u12
6 u4 + u4u6u

2
5u2 + 1

4u5
4

+ 2u5u3u2 + 1
6u5

2u6
4u2 + 1

12u6
5u2u4 − 1

2u4
2u6

2u2 + 1
2u4

3u6
2u5

2

− 1
3u4

2u6u5
4 − 1

36u5
4u4u6

4 + u4u6u1 − u5
2u1, (25)

which, as expected, is a factor in the polynomial obtained from the resultant calculation
described above. Note that calculating SW4,5 as the Schur–Weierstrass polynomial is,
computationally, far easier than using a multivariate resultant method.

In the discussion above we could have truncated equations (12) at successively higher
weights of λ, instead of just setting λ = 0. In each case we would use resultants to generate
a polynomial that is a multiple of the expansion of σ(u), truncated at that weight. Since this
was generated using polynomials of homogeneous weight we know that the expansion of σ(u)

must also have definite weight.

Remark 6.3. We will fix the constant c in definition (3.1) to be the value that makes K = 1
in lemma (6.2). Some other authors working in this area would instead set

c =
(

π6

det(w′)

) 1
2

· 1

D
1
8

,

11
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where D is the discriminant of the curve C. In general, these two choices of c are not equivalent.
However the constant c will cancel in the definitions of all the Abelian functions, and hence
any relation between such functions is independent of c.

Lemma 6.4. The function σ(u) associated with the (4,5)-curve is odd with respect to
u �→ [−1]u.

Proof. In theorem 3(iii) of [18] the author shows that for any (n, s)-curve

σ(−u) = (−1)
1

24 (n2−1)(s2−1)σ (u).

Hence in the (4,5)-case the function σ(u) must be odd. �

We now have enough information to derive a Taylor series expansion for σ(u), similar to
that of the elliptic case in (4).

Theorem 6.5. The function σ(u) associated with (7) has the following expansion:

σ(u) = σ(u1, u2, u3, u4, u5, u6) = C15(u) + C19(u) + · · · + C15+4n(u) + · · · ,
where each Ck is a finite, odd polynomial composed of products of monomials in u =
(u1, . . . , u6) of total weight +k multiplied by monomials in λ = (λ4, . . . , λ0) of total weight
15 − k.

Proof. The theoretical part of the proof follows [8, 9]. By theorem 3(i) in [18], we know
the expansion will be a sum of monomials in u and λ with rational coefficients, and by
lemma 6.4 we conclude that the expansion must be odd. We also know that σ(u) has definite
weight, and by lemma 6.2 we can conclude this to be the same weight as the Schur–Weierstrass
polynomial. From equation (25) we see this weight is +15.

The rationale of the construction is that although the expansion is homogeneous of weight
+15, it will contain both u (with positive weight) and λ (with negative weight). We hence split
up the infinite expansion into finite polynomials whose terms share common weight ratios.

The first polynomial will be the terms with the lowest weight in u. These must be the
terms that do not vary with λ. The indices then increase by four since the weights of λ

decrease by four (see definition 2.1). �

By lemma 6.2 we have C15 = SW4,5 as given by (25). Using the computer algebra
package Maple we calculate the other polynomials successively as follows:

(i) Select the terms that could appear in Ck . These are a finite number of monomials formed
by entries of u and λ with the appropriate weight ratio.

(ii) Construct σ̂ (u) as the sum of Ck derived thus far. Then add to this each of the possible
terms multiplied by an independent, unidentified constant.

(iii) Determine the constants by ensuring σ̂ (u) satisfies known properties of the σ -function:
• For the first few Ck this is mainly ensuring lemma 6.1 is satisfied (as in the trigonal

calculations).
• For the latter Ck the coefficients are instead determined by ensuring a variety of the

equations from lemma 7.4 are satisfied.
• In addition, those polynomials up to C39 require we ensure σ(u) satisfies some of the

relations between ℘-functions obtained from the expansion of the Kleinian formula
in section 5.

The second method is the most computationally efficient (due to the pole cancellations),
while the third method is extremely difficult. The equations in lemma 7.4 are derived in
tandem with the σ -function expansion, and so cannot be used for the first few Ck .

12
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The expansion has been calculated up to and including C59. Appendix B contains C19

and C23 with the rest of the expansion online at [16]. These latter polynomials are extremely
large and represent a significant amount of computation. Many of the calculations were run
in parallel on a cluster of machines using the Distributed Maple package (see [11]). This
expansion is sufficient for any explicit calculations. However, it would be ideal to find a
recursive construction of the expansion generalizing the elliptic case (see for example [19]).

7. Relations between the Abelian functions

In the previous section, we showed that σ(u) has definite Sato weight, and hence so do the
Abelian functions defined from it. We can conclude from definition 4.3 that

wt(℘i1,i2,...,in ) = −[wt(ui1) + wt(ui2) + · · · + wt(uin)]. (26)

Then use equations (20) and (21) respectively to conclude

wt(Qijkl) = wt(℘ijkl) and wt(Qijklmn) = wt(℘ijklmn). (27)

We now introduce the following definition to classify the Abelian functions associated
with C by their pole structure.

Definition 7.1. Define

�(J,O(m�[k]))

as the vector space of Abelian functions defined upon J which have poles of order at most m,
occurring only on the kth standard theta subset, �[k].

Recall that the Abelian functions we define all have poles occurring only when σ(u) = 0,
which by lemma 6.1, is when u ∈ �[5]. Therefore, using remark 4.6 (iii) we conclude that
the n-index ℘-functions belong to �(J,O(n�[5])), while the n-index Q-functions all belong
to (J,O(2�[5])).

Lemma 7.2. Suppose we have a basis for the vector space �(J,O(m�[k])). Then an element
of the space that is not contained in the basis can be expressed as a linear combination of the
basis entries, with coefficients polynomial in λ = {λ4, λ3, λ2, λ1, λ0}.
Proof. The significance of the lemma is that we need not consider the coefficients to be
rational functions of λ, as may be expected. We can modify the argument from theorem 9.1
in [8] to prove this. Let X be an element of the vector space that is not in the basis. Then

X =
∑

j

Aj (λ)Yj ≡
∑

j

Pj (λ)

Qj (λ)
Yj , (28)

where the Yj are elements of the basis, and the Aj are rational functions of λ. Since the
polynomials Pj ,Qj belong to a polynomial ring we suppose that the Aj have been expressed
in reduced fractional form. We will suppose for a contradiction that at least one of the Aj is
not polynomial.

Define B as the least common multiple of {Qj(λ)}. There will be specific values of λ
that set B = 0 while leaving at least one Pj (λ) non-zero (see, for example, chapter 1 of [20]).
Multiply both sides of equation (28) by B and take λ to be one of these special values. In this
case the equation we obtain would invalidate the linear independence of the basis. Therefore
we conclude that all the Aj must be polynomial in λ. �
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Theorem 4. A basis for �(J,O(2�[5])) is given by

C1 ⊕ C℘11 ⊕ C℘12 ⊕ C℘13 ⊕ C℘14

⊕ C℘15 ⊕ C℘16 ⊕ C℘22 ⊕ C℘23 ⊕ C℘24

⊕ C℘25 ⊕ C℘26 ⊕ C℘33 ⊕ C℘34 ⊕ C℘35

⊕ C℘36 ⊕ C℘44 ⊕ C℘45 ⊕ C℘46 ⊕ C℘55

⊕ C℘56 ⊕ C℘66 ⊕ CQ5566 ⊕ CQ4556 ⊕ CQ4555

⊕ CQ4455 ⊕ CQ3566 ⊕ CQ3556 ⊕ CQ2566 ⊕ CQ2556

⊕ CQ3456 ⊕ CQ2456 ⊕ CQ3366 ⊕ CQ3445 ⊕ CQ2366

⊕ CQ2445 ⊕ CQ1466 ⊕ CQ1556 ⊕ CQ2266 ⊕ CQ2356

⊕ CQ2256 ⊕ CQ2346 ⊕ CQ1455 ⊕ CQ2345 ⊕ CQ3344

⊕ CQ2245 ⊕ CQ2344 ⊕ CQ1266 ⊕ CQ1356 ⊕ CQ1444

⊕ CQ1346 ⊕ CQ2236 ⊕ CQ2335 ⊕ CQ1246 ⊕ CQ1255

⊕ CQ1245 ⊕ CQ1166 ⊕ CQ1244 ⊕ CQ1156 ⊕ CQ1146

⊕ CQ1155 ⊕ CQ1145 ⊕ CQ1144 ⊕ CQ114466.

(29)

Proof. The dimension of the space is 2g = 26 = 64 by the Riemann–Roch theorem for
Abelian varieties. It was shown above that all the selected elements do, in fact, belong to the
space. All that remains is to prove their linear independence, which can be done explicitly
using Maple. �

The actual construction of the basis is as follows. We start by including all 21 of the ℘ij

in the basis, since they are all linearly independent. Then, to decide which Qijkl to include,
we systematically consider decreasing weights in turn, starting at −4 since this is the highest
weight of any Q-function. At each stage we derive equations to express the Q-functions at
that weight using the following method (implemented with Maple):

(i) We form a sum of basis entries, each multiplied by an undetermined coefficient. We
include those basis entries at this weight, along with elements in the basis of a higher
weight (already determined) combined with appropriate λ-monomials that balance the
weight. Note from lemma 7.2 that we need not consider basis entries multiplied by
rational functions in the λ.

(ii) We also include in this sum the Qijkl which are at this weight.
(iii) Substitute the Abelian functions for their definitions as σ -derivatives.
(iv) Substitute σ(u) for the expansion, truncated at the appropriate point.
(v) Take the numerator of the resulting expression and separate into monomials in u and λ,

with coefficients in the unidentified coefficients.
(vi) Set all the coefficients to zero and solve the resulting system of equations.

At weights which have more than one Q-function we often find that one or more must be
added to the basis so that the others can be expressed.

We form these equations at successively lower weights constructing the basis as we
proceed. As the weight decreases we require more of the expansion, which is why these were
calculated in tandem. Also, as the weight decreases the possible number of terms increases,
and the computations take more time and memory. Upon completing this process we have 63
basis elements.

14
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We find the final element by considering the 6-index Q-functions. Repeating the process
we found that one of the functions at weight −30 is required to express the others.

Sets of differential equations satisfied by the Abelian functions. We now present a number
of differential equations between the Abelian functions. The number in brackets on the left
indicates the weight of the equation.

Lemma 7.4. Those 4-index Q-functions not in the basis can be expressed as a linear
combination of the basis elements:

(−4) Q6666 = −3℘55 + 4℘46,

(−5) Q5666 = −2℘45,

(−6) Q4666 = 6λ4℘66 − 2℘44 − 3
2Q5566,

(−7) Q4566 = 2λ4℘56 + 2℘36,

(−7) Q5556 = 4λ4℘56 + 4℘36,

....

A longer list is given in appendix C, while the full set is available online at [16].
The same statement is also true for all the 6-index Q-functions, except Q114466 which is

in the basis. Explicit relations have been calculated down to weight −30. The first few are
given below with all available relations online at [16]:

(−6) Q666666 = 40℘44 + 15Q5566 − 24℘66λ4,

(−7) Q566666 = 20℘36 − 4℘56λ4,

(−8) Q556666 = 24℘26 − 12℘35 − 2Q4556,

(−8) Q466666 = −20℘35 + 5Q4556 + 16℘46λ4 − 20℘55λ4 − 8λ3.

Proof. By lemma 7.2 it is clear that such relations must exist. The explicit PDEs were
calculated in the construction of the basis, as discussed at the start of this section. �

Corollary 7.5. There are a set of PDEs that express 4-index ℘-functions using Abelian
functions of order at most 2. The full set can be found online at [16]:

(−4) ℘6666 = 6℘2
66 − 3℘55 + 4℘46, (30a)

(−5) ℘5666 = 6℘56℘66 − 2℘45, (30b)

(−6) ℘4666 = 6℘46℘66 + 6λ4℘66 − 2℘44 − 3
2℘5566 + 3℘66℘55 + 6℘2

56,

(−7) ℘4566 = 2℘45℘66 + 4℘46℘56 + 2λ4℘56 + 2℘36,

(−7) ℘5556 = 6℘55℘56 + 4λ4℘56 + 4℘36.

Proof. Apply (20) to the first set of relations in lemma 7.4. �

The set of equations in corollary 7.5 is of particular interest because it gives a generalization
of (2) from the elliptic case. A similar generalization for (3) would be a set of equations that
express the 3-index ℘-functions using Abelian function of order at most 3. So far the following
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relations have been derived (see [16] for the latest list):

(−6) ℘2
666 = 4℘3

66 − 7℘2
56 + 4℘46℘66 − 8℘55℘66 − 4℘66λ4 + 4℘44 + 2℘5566,

(−7) ℘566℘666 = 4℘2
66℘56 + 2℘46℘56 − ℘55℘56 − 2℘45℘66 + 2℘36,

(−8) ℘556℘666 = −4℘26 − 2℘35 − 4℘55λ4 − 4λ3 + 2℘4556 − 6℘45℘56

− 2℘46℘55 + ℘5566℘66 − 2℘2
56℘66 − 2℘2

55,

(−8) ℘2
566 = 4℘2

56℘66 + 4℘46℘55 + ℘2
55 + 4℘55λ4 + 4℘45℘56 + 8℘26

+ 4λ3 − 2℘4556,

(−8) ℘466℘666 = 4℘2
56℘66 + 4℘46℘

2
66 + 2℘55℘

2
66 + 4℘2

66λ4 + 2℘2
46

− 2℘55λ4 − 3℘45℘56 − 2℘44℘66 − ℘5566℘66 − 2℘26 − 2℘35

− 4℘46℘55 − 2λ3 + ℘4556,

(−9) ℘556℘566 = −2℘3
56 − 2℘45℘55 − 4

3℘45λ4 + ℘5566℘56 − 4
3℘34 + 1

3℘4555,

(−9) ℘555℘666 = −3℘5566℘56 − 4℘44℘56 + 8℘56℘66λ4 + 12℘56℘55℘66

+ 10℘3
56 + 8

3℘45λ4 − 4
3℘34 − 2

3℘4555 + 4℘45℘46 + 8℘36℘66,

(−9) ℘466℘566 = 2
3℘34 − 2℘25 − 2℘45℘46 + 1

3℘4555 + 2℘56℘55℘66 − ℘45℘55

+ 4℘56℘46℘66 + 4℘3
56 − 4

3℘45λ4 − 2℘44℘56 + 4℘56℘66λ4 − ℘5566℘56,

(−9) ℘456℘666 = −℘56℘55℘66 + 2℘45℘
2
66 + 2℘56℘46℘66 + 2℘36℘66 − 2℘3

56

+ 2℘44℘56 + 4
3℘45λ4 + 1

2℘5566℘56 − 2
3℘34 − 1

3℘4555 + 2℘45℘46.

Proposition 7.6. There are a set of relations that are bilinear in the 2-index and 3-index
℘-functions. (See [16] for full list.) There is no analogue in the elliptic case, although similar
relations have been derived in the hyperelliptic and trigonal cases:

(−6) 0 = −℘555 + 2℘456 + 2℘566℘66 − 2℘56℘666,

(−7) 0 = −2℘446 + 2℘455 − 2℘466℘66 + 2℘666λ4 + 2℘46℘666

− 2℘556℘66 + ℘55℘666 + ℘566℘56,

(−8) 0 = 2℘46℘566 − 2℘56℘466 + ℘555℘66 − 2℘55℘566 + ℘556℘56 − 2℘366,

(−8) 0 = 2℘456℘66 − ℘445 + ℘56℘466 − ℘366 − ℘566λ4

−℘45℘666 − 2℘46℘566,

(−9) 0 = −2℘455℘66 + 4℘266 + 2℘45℘566 + 2℘466℘55 − 2℘46℘556

−℘555℘56 + ℘556℘55 − 2℘356.

(31)

Proof. These can be calculated by cross differentiating suitable pairs of equations from
corollary 7.5. For example, (30) expresses ℘6666(u) while (30) expresses ℘5666(u). If we
substitute for these equations into

∂

∂u5
℘6666(u) − ∂

∂u6
℘5666(u) = 0,

then we find (31). �

A topic of future work in this area would be the construction of relations between the ℘-
functions in covariant form, as was recently achieved in [21] for the hyperelliptic case.
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8. Solution to the KP-equation

We now demonstrate how such Abelian functions can give a solution to the KP-equation.
Differentiate (30) twice with respect to u6 to obtain

℘666666 = 12
∂

∂u6
(℘66℘666) − 3℘5566 + 4℘4666.

Make the substitutions u6 = x, u5 = y, u4 = t and W(x, y, t) = ℘66(u), and rearrange to
give the following parametrized form of the KP-equation:

[Wxxx − 12WWx − 4Wt ]x + 3Wyy = 0.

In fact, this is just a special case of the following general result for Abelian functions associated
with algebraic curves.

Theorem 8.1. Let E be an (n, s)-curve with genus g as given by (6). Define the multivariate
σ -function associated with E as normal. Define the Abelian functions from σ(u) as in
section 4 (with the indices now running to g instead of 6). Finally, define the function
W(u) = ℘gg(u), which we denote W(x, y, t) after applying the substitutions ug = x, ug−1 =
y, ug−2 = t .

Then, if n � 4, the function W(x, y, t) will satisfy the following parametrized version of
the KP-equation:

(Wxxx − 12WWx − bWt)x − aWyy = 0, (32)

for some constants a, b.

Proof. Recall definitions 2.1 and 2.2 which gave the Sato weights for C. These can be
calculated for the general curve E similarly as

wt(x) = −n, wt(y) = −s,

wt(ug) = ω1, wt(ug−1) = ω2, . . . wt(u1) = ωg,

wt(λ0) = −ns, wt(λ1) = −n(s − 1), . . . wt(λs−1) = −n.

Here n, s are the integers generating the curve and {ω1, . . . , ωg} is the Weierstrass gap sequence
for n, s. These are the natural numbers not representable in the form an + bs where a, b ∈ N.
(See [17], section 1 for more details.)

Since s > n > 4 we know that {1, 2, 3} cannot be represented in this form. Therefore we
have

wt(ug) = +1, wt(ug−1) = +2, wt(ug−2) = +3.

By (26) this implies the ℘-functions will have weights

wt(℘g,g) = −2, wt(℘g,g−1) = −3, wt(℘g−1,g−1) = −4, wt(℘g−2,g) = −4,

with all the other 2-index ℘-functions having a lower weight. Next consider Qgggg , which
will have weight −4. This will belong to �(J,O(2�[g−1])), the space of Abelian functions
defined upon the Jacobian of E which have poles of at most order 2 on �[g−1]. By lemma 7.2
we can express Qgggg as

Qgggg = a℘g−1,g−1 + b℘g−2,g, (a, b constants),

since these are the only Abelian functions of weight −4, and there is no function of lower
weight that could be combined with a λ-monomial. We use remark 4.6 to substitute for Q and
then differentiate twice with respect to ug to give

℘gggggg = 12
∂

∂ug

(℘gg℘ggg) + a℘g−1,g−1,g,g + b℘g−2,g,g,g.

Then make the substitutions suggested in the theorem to obtain (32). �
Further research into the applications of these results is currently being conducted.
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9. Two-term addition formula

Theorem 9.1. The functions associated with (7) satisfy the following two-term addition
formula:

−σ(u + v)σ (u − v)

σ (u)2σ(v)2
= f (u,v) − f (v,u),

where f (u,v) is a polynomial of Abelian functions, given in appendix D.

Proof. We seek to express the following ratio of σ -functions (labelled LHS) using a sum of
Abelian functions:

LHS(u,v) = −σ(u + v)σ (u − v)

σ (u)2σ(v)2
. (33)

First recall that σ(u) is an odd function with respect to the change of variables u �→ [−1]u.
We use this to consider the effect of (u,v) �→ (v,u) on LHS:

LHS(v,u) = −σ(u + v)σ ([−1](u − v))

σ (u)2σ(v)2
= −LHS(u,v).

So LHS is antisymmetric or odd with respect to (u,v) �→ (v,u).
Next, recall that σ(u) has zeros of order 1 along �[5] and no zeros elsewhere. This

implies that LHS has poles of order 2 along

(�[5] × J ) ∪ (�[5] × J )

but nowhere else. Together this implies that we can express LHS as

LHS =
∑

j

Aj (Xj (u)Yj (v) − Xj(v)Yj (u)), (34)

where the Xj and Yj are functions chosen from the basis in theorem 4, and the Aj are constant
coefficients. A modification of lemma 7.2 will show that the Aj must be polynomial functions
of λ.

Finally, we use the fact that σ has weight +15 to determine that the weight of LHS is −30.
Hence we need only consider those terms in (34) that give the correct overall weight.

We use Maple to construct (34) with the Aj undetermined. This contained 1348 terms
(647 undetermined coefficients since it is antisymmetric). The coefficients can be determined
using the σ -function expansion. �

We believe this to be the first of a family of similar addition formula related to the
invariance expressed in (8). There has been much work conducted into these addition formula
for the trigonal cases (see [8] for example). In [22], we see that this has inspired new results
in the lower genus cases.
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Appendix A. Expansion of the Kleinian formula

We consider (22) from theorem 5.1. We expand this as one of the Pk tends to infinity to
obtain a series expansion in terms of the local parameter ξ . It follows that each coefficient
with respect to ξ must be zero, giving us an infinite sequence of equations starting with those
below:

0 = −z3 + ℘46z
2 + (℘56w + ℘26)z + ℘66w

2 + ℘36w + ℘16, (A.1)

0 = (℘45 − ℘466 − 2w)z2 + ((℘55 − ℘566)w + ℘25 − ℘266)z

+ (℘56 − ℘666)w
2 + (℘35 − ℘366)w + ℘15 − ℘166, (A.2)

0 = (
℘44 − 3

2℘456 + 1
2℘4666

)
z2 +

(−3w2 +
(
℘45 − 3

2℘556 + 1
2℘5666

)
w

− 3
2℘256 + ℘24 + 1

2℘2666
)
z +

(
1
2℘6666 − 3

2℘566 + ℘46
)
w2

+
(

1
2℘3666 + ℘34 − 3

2℘356
)
w + ℘14 + 1

2℘1666 − 3
2℘156, (A.3)

0 = (
℘4566 − 4

3℘446 − 1
6℘46666 − 1

2℘455
)
z2 +

((
℘5566 − 4

3℘456 − 1
6℘56666

− 1
2℘555

)
w − 4

3℘246 − 1
2℘255 + ℘2566 − 1

6℘26666
)
z − 4w3 + (℘5666

− 1
2℘556 − 1

6℘66666 − 4
3℘466

)
w2 +

(− 1
6℘36666 + ℘3566 − 4

3℘346

− 1
2℘355

)
w − 1

6℘16666 + ℘1566 − 4
3℘146 − 1

2℘155, (A.4)

0 = −3z4 − (
2℘46 + 9

2λ4
)
z3 +

(
5
8℘4556 − 5

6℘445 − 5
12℘45666 − 2℘56w − 2℘26

− 3λ3 + 5
6℘4466 + 1

2℘46λ4 + 1
24℘466666

)
z2 +

(−2℘66w
2 +

(
1
24℘566666

− 5
6℘455 + 5

6℘4566 − 5
12℘55666 + 1

2℘56λ4 + 5
8℘5556 − 2℘36

)
w − 5

12℘25666

− 5
6℘245 − 2λ2 + 5

6℘2466 + 5
8℘2556 + 1

24℘266666 − 2℘16 + 1
2℘26λ4

)
z

+
(

1
2℘66λ4 − 5

12℘56666 + 1
24℘666666 − 5

6℘456 + 5
6℘4666 + 5

8℘5566
)
w2

+
(

1
24℘366666 + 5

6℘3466 + 5
8℘3556 + 1

2℘36λ4 − 5
12℘35666 − 5

6℘345
)
w

+ 5
8℘1556 − λ1 − 5

12℘15666 + 1
24℘166666 + 5

6℘1466 − 5
6℘145 + 1

2℘16λ4. (A.5)

Appendix B. The σ-function expansion

We defined the σ -function expansion as the infinite sum of finite polynomials:

σ(u) = C15 + C19 + C23 + C27 + C31 + C35 + · · · .
We know that C15 is equal to the Schur–Weierstrass polynomial as given in (25). The other
polynomials were calculated, in turn, using the method described in section 6. The next
polynomials, C19 and C23, are given below, while the rest of the expansion can be found at
[16]:

C19 = λ4 · [
1

1 39 70 880u6
16u4 + 2

135u6
3u5

8 − u6
2u5u4

3u3 − u6
2u4u2

2 + 4
45u5

6u2

− 2
45u6

3u5
5u3 − 1

5u6u5
6u4

2 + 1
90u6

4u5
6u4 − 1

30u6
5u4u1 + 5

3024u6
9u5

2u4
2

+ 1
10u5

2u4
5 + 1

30u6
5u2

2 + 1
20956320u6

15u5
2 − 1

3u5
4u1 − 2

45u5
8u4

− 1
1890u6

7u5
6 − 1

120u6
7u4

4 + 1
665280u6

13u4
2 − 1

83 160u6
11u5

4
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− 1
630u6

7u3
2 − 1

5040u6
10u4

3 + 1
3024u6

9u4u2 + 1
2u6

2u4
2u1 + u6

2u5
2u4

2u2

− 1
280u6

8u5u4u3 + 2
15u6

5u5
2u4u2 − 2

9u6
4u5

3u4u3 − 2
3u6u5

3u4
2u3

− 1
10u6

5u5u4
2u3 + 1

3u6u5
4u4u2 − u6u4

2u3
2 + 1

20u6
4u4

5 + 1
2520u6

8u5
4u4

+ 1
30u6

6u4
2u2 + 1

6u6
4u4u3

2 + 4
3u5

3u3u2 − 4
945u6

7u5
3u3 + 1

18u6
4u5

4u2

− 1
180u6

6u5
2u4

3 − 17
997 920u6

12u5
2u4 + 1

630u6
8u5

2u2 + 3
20u6u4

6

+ 2
15u5

5u4u3 + 1
2u4

4u2 + 1
997 920u6

12u2 + 1
5040u6

8u1

− 1
6u6

3u4
3u2 − 1

83160u6
11u5u3 − 1

60u6
5u5

4u4
2 + 1

3u6
3u5

2u4
4] ,

C23(u) = λ3 · [
u5

2u3
2u2 − 1

360u6
6u4

2u1 + 1
6u5

4u4u3
2 − 1

18u6
3u5

4u3
2

− 1
252u6

7u5
2u3

2 + 1
72u6

4u5
4u1 + 1

6u6u5
4u2

2 + 1
12u6

5u5
2u2

2

+ 1
12u6

4u3
2u2 + 1

2016u6
8u5

2u1
5

144u6
4u4

4u2 − 29
1 79 62 560u6

12u5
4u4

+ 1
11 17 67 040u6

16u5
2u4 + 17

1 19 75 040u6
13u4u2 − 17

315u5
7u4u3 − 1

30u6
5u5u4u3u2

+ 1
18u6

3u4
3u1 + 1

5u5
5u3u2 − 1

74 844u6
12u5

2u2 − 1
6u6

3u4
2u2

2

+ 1
630u6u5

8u4
2 + 1

7560u6
4u5

8u4 − 1
45 360u6

8u5
6u4 − 1

60u6u5
2u4

6

+ 1
240u6

4u5
2u4

5 + 1
216u6

3u5
4u4

4 + 1
1680u6

7u5
2u4

4 + 2
15u5u4

5u3

+ 1
6480u6

6u5
4u4

3 + 1
36288u6

10u5
2u4

3 + 1
2 99 376u6

11u5
3u3 − 1

2u6
2u2

3

− 1
540u6

2u5
6u4

3 + 1
2 51 47 584u6

15u5u3 − 1
1260u6

7u5
5u3 + 1

6u4
3u2

2

+ 1
33 53 01 120u6

17u4
2 − 1

630u5
8u2 − 1

1890u5
10u4 + 1

60u6
5u4

2u3
2

− 11
10080u6

8u4u3
2 + 7

60u6u4
5u2 − 37

1 81 440u6
10u4

2u2 − 13
1890u6

7u4
3u2

+ 17
945u6

3u5
7u3 + 1

12u5
2u4

4u2 + 2
135u6

4u5
6u2 − 1

3024u6
8u5

4u2

+ 1
1 58 760u6

7u5
8 − 1

6u6u5
4u4u1 + 1

19 95 840u6
13u5

2u4
2 + 1

120u6
2u4

7 + · · ·
· · · + 5

18144u6
9u2

2 + 1
1146 72 98 304u6

19u5
2 + 1

23 95 008u6
12u1 + 2

3u6u5
3u4u3u2

+ 1
5670u6

3u5
10 − 1

18u6
4u5

3u3u2 + 1
9u6

2u5
3u4

3u3 − 1
5u6u5

5u4
2u3

− 43
59 87 520u6

12u5u4u3 + 113
90 720u6

9u5
2u4u2 − 1

2 29 34 59 66 080u6
20u4

− 1
90u6

5u5
3u4

2u3 + 1
540u6

5u5
6u4

2 + 1
2u6

2u5
2u4u2

2 + 1
17010u6

9u5
4u4

2

− 1
8064u6

8u4
5 − 7

360u5
4u4

5 − 1
39 91 680u6

11u4
4 − 1

7 54 42 752u6
15u5

4

− 1
1 99 584u6

11u3
2 + 1

2 87 40 096u6
16u2 + 1

720u6
5u4

6 − 1
16 76 50 560u6

14u4
3

− 1
12u6

4u5
2u4u3

2 − 1
1008u6

8u5u3u2 + 1
2u6

2u5
2u4

2u1 + 11
90 720u6

9u4u1

+ 11
360u6

6u4u2
2 − u6

2u5u4
2u3u2 − u6u4u3

2u2 − u6u5
2u4

2u3
2

+ 1
9u6

3u5u4
4u3 + 11

15120u6
8u5

3u4u3 + 1
60u6

5u5
2u4u1 − 7

90u6u5
6u4u2

− 7
360u6

5u5
4u4u2 − 1

360u6
6u5

2u4
2u2 − 7

540u6
6u5u4

3u3 − 1
30u5

6u1

− 1
60u6

4u5
5u4u3 − 1

12u6
2u5

4u4
2u2 + 1

45360u6
9u5u4

2u3 + 1
3u4

4u1

+ 1
105 957 836 328 96u6

23 − 1
6u6

2u4
3u3

2 + 2
9u6

3u5
2u4

3u2 − 1
641 520u6

11u5
6]

+ λ2
4 · [− 1

180u6
6u4

2u1 − 1
72u6

4u4
4u2 − 13

204 1200u6
12u5

4u4

+ 1
299 3760u6

13u4u2 + 4
315u5

7u4u3 + 1
226 80u6

9u4u1 + 1
9u6

3u4
3u1

+ 4
15u5

5u3u2 + 1
467 775u6

12u5
2u2 − 1

3u6
3u4

2u2
2 − 17

315u6u5
8u4

2
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+ 5
756u6

4u5
8u4 − 1

141 75u6
8u5

6u4 + 1
15u6u5

2u4
6 + 13

120u6
4u5

2u4
5

+ 7
108u6

3u5
4u4

4 − 1
280u6

7u5
2u4

4 − 1
30u5u4

5u3 − 1
162u6

6u5
4u4

3

+ 101
226 800u6

10u5
2u4

3 − 4
467 775u6

11u5
3u3 − 8

135u6
2u5

6u4
3

− 4
4725u6

7u5
5u3 + 1

3u4
3u2

2 + 17
838 252 800u6

17u4
2 + 1

105u5
8u2

+ 1
30u6

5u4
2u3

2 − 1
2520u6

8u4u3
2 + 17

60u6u4
5u2 + 1

16200u6
10u4

2u2

+ 23
3780u6

7u4
3u2 − 4

945u6
3u5

7u3 + 1
6u5

2u4
4u2 + 1

135u6
4u5

6u2

− 1
3u6

2u4
3u3

2 − 43
396 900u6

7u5
8 − 1

199 584u6
13u5

2u4
2 + 1

24u6
2u4

7

− 2
45u5

6u1 − 1
226 80u6

9u2
2 − 1

286 682 457 60u6
19u5

2 − 1
149 688 00u6

12u1

+ 41
14175u6

3u5
10 − 4

9u6
2u5

3u4
3u3 − 2

15u6u5
5u4

2u3 − 31
748 4400u6

12u5u4u3

+ 2
2835u6

9u5
2u4u2 + 1

573 364 915 200u6
20u4 − 4

45u6
5u5

3u4
2u3

− 1
1350u6

5u5
6u4

2 + 29
680 40u6

9u5
4u4

2 − 247
100 800u6

8u4
5 + 1

36u5
4u4

5

− 593
997 9200u6

11u4
4 + 1

673 596 00u6
15u5

4 + 1
124 7400u6

11u3
2 + 1

251 475 8400u6
16u2

+ 13
900u6

5u4
6 + 19

41912640u6
14u4

3 − 1
12u4

4u1

+ 1
90u6

6u4u2
2 − 5

18u6
3u5u4

4u3 − 2
945u6

8u5
3u4u3 + 2

45u6u5
6u4u2

+ 2
45u6

5u5
4u4u2 + 2

45u6
6u5

2u4
2u2 − 7

270u6
6u5u4

3u3 + 4
9u6

3u5
2u4

3u2

− 2
45u6

4u5
5u4u3 + 1

3u6
2u5

4u4
2u2 − 17

226 80u6
9u5u4

2u3

− 1
561 330u6

11u5
6 − 1

264 894 590 822 40u6
23 + 1

1890u6
8u5

4u2

+ 1
399 168 00u6

16u5
2u4 − 1

157 172 400u6
15u5u3 − 41

4725u5
10u4

]
.

Appendix C. The 4-index Q-functions

This appendix contains a list of PDEs expressing the 4-index Q-functions that were not
elements of the basis for �

(
J,O(2�[5])

)
as a linear combination of basis elements. This

appendix contains all the equations down to weight −22. The full set can be accessed at [16].
The PDEs are ordered in decreasing weight (the number in brackets):

(−4) Q6666 = −3℘55 + 4℘46,

(−5) Q5666 = −2℘45,

(−6) Q4666 = 6λ4℘66 − 2℘44 − 3
2Q5566,

(−7) Q4566 = 2λ4℘56 + 2℘36,

(−7) Q5556 = 4λ4℘56 + 4℘36,

(−8) Q4466 = 4λ4℘46 + λ4℘55 + ℘35 + 6℘26 − Q4556 + 4λ3,

(−8) Q5555 = 16λ4℘55 + 4℘35 + 24℘26 − 6Q4556 + 16λ3,

(−9) Q4456 = 8
3λ4℘45 + 2℘25 − 4

3℘34 − 1
6Q4555,

(−9) Q3666 = 2λ4℘45 − 1
2Q4555,

(−10) Q2666 = − 1
2Q4455 − 1

2Q3566 − 1
2λ4Q5566 + 4℘66λ3,

(−10) Q4446 = 6λ4℘44 − 2℘24 − 2λ2
4℘66

−Q4455 + 1
2λ4Q5566 − 5

2Q3566 + 4℘66λ3,
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(−11) Q3466 = 4℘36λ4 − 1
2Q3566,

(−11) Q4445 = 6℘36λ4 − 2℘56λ
2
4 + 8℘56λ3 − 3Q2566 − 3

2Q3556,

(−12) Q2466 = 8℘16 − ℘33 + 2λ2 − 1
2Q2456 − Q3456 + 4λ4℘26 + 2λ4℘35,

(−12) Q3555 = 24℘16 − 8℘33 + 16λ4℘35 − 6Q3456,

(−12) Q4444 = −12℘16 + 9℘33 + 6λ2 + 12Q3456 + 12℘55λ3 + 4℘46λ
2
4

− 16℘46λ3 − 3℘55λ
2
4 + 12λ4℘26 − 18λ4℘35 − 6Q2556,

(−13) Q2555 = 2℘15 − 8℘23 + 16℘25λ4 − 6Q2456,

(−13) Q3446 = 6℘15 − 4℘23 + 4℘25λ4 + 8
3℘34λ4 + 2

3℘45λ
2
4 − 1

6Q4555λ4 − 2Q2456,

(−13) Q3455 = −4℘25λ4 + 8
3℘34λ4 − 4

3℘45λ
2
4 + 1

3Q4555λ4 + 2Q2456,

(−14) Q1666 = − 1
2λ4Q3566 + Q3366 − 1

2Q3445,

(−14) Q2446 = 8
3℘14 − 2℘22 + 8

3℘24λ4 − 2
3℘66λ4λ3 + 5

6Q3366 + Q5566λ3

− 1
6Q5566λ

2
4 + 2℘44λ3 − 1

6λ4Q4455 − 4
3λ4Q3566 − 7

6Q3445,

(−14) Q2455 = 8
3℘14 − 2℘22 + 8

3℘24λ4 − 2
3℘66λ4λ3 − 5

3Q3366 − Q5566λ3

+ 1
3Q5566λ

2
4 + 6℘66λ2 − 2℘44λ3 + 1

3λ4Q4455 + 2
3λ4Q3566 + 1

3Q3445,

(−15) Q1566 = − 1
4Q2445 − 1

4Q2455λ4 + 3
4℘2366 − 3

2℘23℘66 − 3℘26℘36

− 1
2℘36λ3 + 3

2℘56λ2,

(−15) Q3356 = − 1
2Q2445 + 3℘36λ3 + 3℘56λ2 − 1

2Q2566λ4 − 1
2Q2366,

(−15) Q3444 = − 3
4Q2445 + 4℘36λ

2
4 − 3

2Q3556λ4 + 13
2 ℘36λ3 + 9

2℘56λ2

− 3
4Q2566λ4 − 15

4 Q2366,

(−16) Q3346 = −2Q1466 + 4λ1 − Q1556 − Q2266 + 16℘16λ4 + 3℘35λ3

−℘55λ2 + 2℘26λ3 − 2Q2356,

(−16) Q3355 = 8Q1466 − 8λ1 + 6Q1556 − 32℘16λ4 + 4℘35λ3 − 2Q2356,

(−16) Q2444 = 2λ4λ2 + 10λ1 + 36℘16λ4 + 3
2℘35λ3 + 15

2 ℘55λ2 − Q3456λ4

− 3
2Q2556λ4 − 7℘26λ3 − 6℘46λ2 + 3℘33λ4 + 6λ4℘3456

− 12λ4℘34℘56 − 12λ4℘35℘46 − 12λ4℘36℘45 + 4℘26λ
2
4

− 6℘35λ
2
4 − 9Q1466 − 9Q1556 + 3

2Q2266 + 3Q2356,

(−17) Q1456 = −2℘13 − ℘45λ2 + 2℘25℘26 + ℘22℘56 + 4℘15λ4 − Q2346

− 1
12Q4555λ3 − 1

2℘2256 + ℘25λ3 + 1
3℘45λ4λ3 + 4

3℘34λ3,

(−17) Q1555 = 4℘13 + 6℘45λ2 + 3Q2256 − 8℘15λ4 + 6Q2346 + 1
2Q4555λ3

− 6℘25λ3 − 2℘45λ4λ3 − 8℘34λ3,

(−17) Q2355 = −4℘13 − 4℘45λ2 − 2Q2256 + 8℘15λ4 − 2Q2346 + 4℘25λ3 + 4℘34λ3,

(−17) Q3345 = −2℘25λ3 + 4
3℘34λ3 − 2

3℘45λ4λ3 + 2℘45λ2 + Q2256 + 1
6Q4555λ3,

(−18) Q1446 = −6℘12 + 6℘66λ1 + 1
2Q3566λ

2
4 − Q1455 + 8℘14λ4 − Q3566λ3

−Q2345 − 1
2Q3344 − 1

2Q3366λ4 + 1
2Q3445λ4,

(−18) Q2246 = 2℘44λ2 − 4℘66λ1 − 2℘66λ4λ2 + 1
2Q3566λ3 + Q3366λ4

−Q3445λ4 − Q3566λ
2
4 + 2℘24λ3 + 3

2Q5566λ2 + Q1455,
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(−18) Q2255 = −8℘12 − 8℘44λ2 + 16℘66λ1 + 32
3 ℘14λ4 + 8℘66λ4λ2

− 2
3Q3566λ3 − 8

3Q3366λ4 + 4
3Q3445λ4 + 4

3Q3566λ
2
4,

+ 4℘23℘45 − 2
3λ4λ3℘55℘66 − 4

3λ4λ3℘
2
56 − 8

3℘66λ
2
3

+ 1
3λ4λ3℘5566 + 4℘24℘35 + 4℘25℘34 − 3Q5566λ2

− 2℘2345 + 1
3Q4455λ3 + 8

3℘24λ3 − 2Q1455,

(−19) Q1366 = − 3
10Q2245 − 2

5Q2344 − 3
10Q2566λ3 − 1

4Q2366λ4 + 3
20Q2455λ4

+ 3
20Q2566λ

2
4 + 12

5 ℘56λ1 − 3
10℘56λ4λ2 + 7

10℘36λ4λ3 + 9
5℘36λ2 − 1

4Q3556λ3,

(−19) Q3336 = − 3
5Q2245 + 6

5Q2344 − 3
5Q2566λ3 + 3

2Q2366λ4 + 3
10Q2455λ4

+ 3
10Q2566λ

2
4 + 38

5 ℘36λ2 − 16
5 ℘56λ1 − 3

5℘56λ4λ2 − 33
5 ℘36λ4λ3 + 3

2Q3556λ3,

(−19) Q1445 = 8℘56λ1 − 1
2Q2245 − Q2344 − 1

2Q2566λ3 − 3
2Q2366λ4

+ 1
2Q2566λ

2
4 + 1

2Q2455λ4 − 2℘56λ4λ2 + 3℘36λ4λ3 + 3℘36λ2 − 3
4Q3556λ3,

(−20) Q2244 = +2λ3λ2 + 28λ4λ1 + 2℘55λ4λ2 − 6℘35λ4λ3 + 3℘33λ3

− 24℘46λ1 + 112℘16λ4
2 − 44℘16λ3 + 28℘55λ1 + 9℘35λ2

+ 20Q1356 − 6Q1444 + 10Q1266 − 22Q1466λ4 + Q2266λ4

+ 2Q2356λ4 + 2Q3456λ3 − 22Q1556λ4 − Q2556λ3 − 6℘26λ2,

(−20) Q2336 = 8℘16λ3 − 2℘55λ1 + 2℘35λ2 − 2Q1356 − 2Q1266,

(−20) Q3335 = −32λ4λ1 + 24℘46λ1 − 128℘16λ4
2 + 56℘16λ3 − 32℘55λ1

− 30Q1356 + 8Q1444 − 12Q1266 + 24Q1466λ4 + 24Q1556λ4 + 4℘35λ2,

(−21) Q1256 = − 1
2Q2236 − Q1346 − 1

12Q4555λ2 + 1
3℘45λ4λ2 + 3℘15λ3

+ 4
3℘34λ2 − 2℘45λ1,

(−21) Q1355 = 1
2Q2236 + Q1346 + 1

4Q4555λ2 − 1
2Q2335 − ℘45λ4λ2 + ℘15λ3,

(−21) Q3334 = − 3
2Q2236 − 3Q1346 + 1

4Q4555λ2 + 3
2Q2335 − ℘45λ4λ2

+ 9℘15λ3 + 12℘34λ2 − 8℘45λ1,

(−22) Q1345 = 5℘66λ0 − ℘11 + 16
15℘14λ

2
4 + 11

5 ℘66λ4λ1 − 7
30Q3566λ4λ3

− 1
5Q3344λ4 − 1

2Q1255 + 10
3 ℘14λ3 − ℘44λ1 − Q1246

+ 2
15Q3566λ4

3 − 1
15Q3366λ4

2 − 1
3Q3366λ3 + 1

6Q3445λ3

− 2
5Q2345λ4 − 4

5℘12λ4 + 2
15Q3445λ4

2,

(−22) Q2226 = −6℘11 + 7
2Q3566λ2 + 1

2Q4455λ2 + 6Q5566λ1 + 32
5 ℘14λ4

2

− 14
5 ℘66λ4λ1 − 39

10Q3566λ4λ3 − 24
5 ℘12λ4 + 4℘24λ2

+ 12℘14λ3 + 6℘44λ1 − 2℘66λ3λ2 − 6Q1246 + 4
5Q3445λ4

2

− 6
5Q3344λ4 − 2

5Q3366λ4
2 + 3

2Q3366λ3 − 3
2Q3445λ3

− 10℘66λ0 − 12
5 Q2345λ4 + 4

5Q3566λ4
3 + 1

2Q5566λ4λ2,

(−22) Q2235 = −2℘11 − Q3566λ2 − 4Q5566λ1 − 32
15℘14λ4

2 + 38
5 ℘66λ4λ1

+ 22
15Q3566λ4λ3 + 8

5℘12λ4 + 10℘66λ0 − Q1255 + 2
15Q3366λ4

2

− 10℘44λ1 + 2Q1246 − 4
15Q3445λ4

2 + 2
5Q3344λ4 + 4

3℘14λ3

− 4
3Q3366λ3 + 2

3Q3445λ3 + 4
5Q2345λ4 − 4

15Q3566λ4
3,
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(−22) Q2334 = −4℘11 − Q3566λ2 + 2Q5566λ1 − 32
15℘14λ4

2 − 32
5 ℘66λ4λ1

+ 7
15Q3566λ4λ3 + 8

5℘12λ4 + Q1255 + 4
3℘14λ3 + 4℘44λ1

− 4
15Q3445λ4

2 + 2
5Q3344λ4 + 2

15Q3366λ4
2 + 2

3Q3366λ3

− 1
3Q3445λ3 + 4

5Q2345λ4 − 4
15Q3566λ4

3.

Appendix D. The two-term addition formula

The Abelian functions associated with C satisfy the following two-term addition formula:

−σ(u + v)σ (u − v)

σ (u)2σ(v)2
= f (u,v) − f (v,u),

where f (u,v) is a finite polynomial of Abelian functions. We write f (u,v) as

f (u,v) = P30 + P26 + P22 + P18 + P14 + P10 + P6 + P2,

where each Pk contains the terms with weight −k in the Abelian functions and weight k − 30
in λ:

P30 = 1
4Q114466(u) + 5

3Q3566(v)Q1356(u) − 1
3℘14(v)Q2356(u)

+ 1
3Q1556(v)℘14(u) − 1

4Q2236(u)℘25(v) − 2
5Q2345(u)℘33(v)

+ 1
10Q3344(v)Q3456(u) − 1

2℘25(v)Q1346(u) + 1
2Q4556(v)℘11(u)

+ 3
5Q3344(u)℘16(v) + 1

24Q1346(v)Q4555(u) + 1
2Q1145(v)℘56(u)

+ 1
12Q2236(v)℘34(u) + 1

2Q1444(v)Q3566(u) − ℘46(v)Q1146(u)

− 1
2Q1556(v)℘22(u) + 1

2Q1155(u)℘46(v) + 5
6Q3566(v)Q1266(u)

+ 7
5℘12(v)Q3456(u) + ℘26(v)Q1246(u) + Q2346(v)℘15(u)

+ 1
10Q2345(u)Q2556(v) − 2

3Q1356(v)Q4455(u) − 1
20Q2245(v)Q2566(u)

+ ℘36(v)Q1245(u) − 1
5℘33(v)Q3344(u) + Q1246(v)℘35(u)

+ 1
3Q1466(u)Q3445(v) − 4

3Q1466(u)℘14(v) − ℘26(v)℘11(u)

+ 1
5℘16(v)Q2345(u) − 1

12Q3445(v)Q2266(u) + 1
2Q5566(v)Q1244(u)

+ 1
6Q1466(v)Q3366(u) + 1

4 8Q4555(v)Q2335(u) + 1
3Q4455(v)Q1266(u)

− 1
6Q4455(v)Q1444(u) + 1

5Q2345(v)Q3456(u) + 1
2Q1156(v)℘45(u)

+ Q2256(v)℘15(u) − 32
5 ℘12(v)℘16(u) − 7

3Q1356(v)℘24(u)

− 1
2℘33(v)Q1455(u) + 1

2℘44(v)Q1166(u) − Q1455(v)℘16(u)

− 1
48Q2236(v)Q4555(u) − 1

20Q3344(v)Q2556(u) − 1
10Q2566(v)Q2344(u)

− 1
10Q3556(v)Q2245(u) − 1

20Q3556(v)Q2344(u) + 1
8Q2445(v)Q2366(u)

+ 1
6Q1556(v)Q3366(u) − 1

2Q1255(u)℘26(v) − 1
2Q1144(v)℘66(u)

− 5
12Q2335(v)℘34(u) + 1

6Q3366(v)Q2266(u) + 2
3℘24(v)Q1266(u)

− 1
2Q2256(v)℘23(u) − ℘22(u)Q1466(v) + 1

2℘55(v)Q1146(u)

+ 1
6Q1346(u)℘34(v) − 1

3℘14(u)Q2266(v) + ℘13(v)Q2456(u)

− 1
5℘12(v)Q2556(u) − 2

3℘24(v)Q1444(u) + 1
4Q2335(v)℘25(u)

+ ℘44(v)Q1244(u) + 14
5 ℘33(u)℘12(v) − Q2346(v)℘23(u) − ℘35(v)℘11(u)

− 1
3Q2356(v)Q3366(u) + 1

3Q3445(v)Q1556(u) − 1
6Q3445(v)Q2356(u),

24



J. Phys. A: Math. Theor. 42 (2009) 095210 M England and J C Eilbeck

P26 = [
1
4Q1155(u) − Q1146(u) − 1

60Q2556(u)Q3366(v) − 1
2Q1556(u)Q4455(v)

+ 1
24Q3566(u)Q2266(v) − 7

6Q5566(v)Q1266(u) + 1
2Q1466(v)Q4455(u)

− 1
15Q3445(v)Q3456(u) − 7

3Q5566(v)Q1356(u) + 7
6Q3566(u)Q1556(v)

+ 1
30Q2556(u)Q3445(v) − 1

2Q5566(u)Q1444(v) + 1
20Q3556(v)Q2445(u)

− 1
30Q3456(v)Q3366(u) + 1

40Q2566(u)Q2445(v) + 7
6Q1466(v)Q3566(u)

+ 1
6Q3566(u)Q2356(v) + 2Q1466(v)℘24(u) − 3

10Q3445(v)℘33(u)

+ 4
15Q2556(u)℘14(v) − 1

6℘45(u)Q1346(v) − 128
15 ℘16(v)℘14(u)

+ 2
5℘33(u)Q3366(v) − 8

15Q3366(v)℘16(u) − 1
24Q2335(u)℘45(v)

+ 2℘23(u)℘15(v) − ℘11(u)℘55(v) + 4℘16(v)℘22(u) − 12
5 ℘33(u)℘14(v)

+ 3℘44(u)Q1266(v) + 4
3℘44(v)Q1444(u) + 3

5℘36(v)Q2344(u)

− 2℘35(u)℘12(v) + 1
24℘45(u)Q2236(v) − 8

15Q3456(u)℘14(v)

−℘66(v)Q1244(u) − 2℘25(u)℘13(v) − 1
5℘36(u)Q2245(v)

+ 14
15℘16(v)Q3445(u) + 6℘44(u)Q1356(v) − 2Q1556(u)℘24(v)

]
λ4,

P22 = [
℘35(v)℘14(u) − Q1466(v)Q5566(u) − 58

15℘16(u)Q3566(v)

−Q1556(u)Q5566(v) − 1
40Q2566(u)Q3556(v) − 1

5Q3456(u)Q3566(v)

− 2Q1466(u)℘44(v) − 1
2Q3366(v)℘35(u) + 2℘44(u)Q1556(v)

+ 1
2℘15(v)℘25(u) − 1

24℘23(u)Q4555(v) + 2
5℘33(u)Q3566(v)

+ 8
3Q1266(u)℘66(v) + 16

3 Q1356(v)℘66(u) − 4
3℘23(v)℘34(u)

+ 1
10Q2556(u)Q3566(v) + 4

3Q1444(u)℘66(v) + 1
4Q3445(v)℘35(u)

− 4
3℘16(u)Q4455(v) − 4℘16(u)℘24(v) − 1

4Q2366(u)℘36(v)

− 13
6 ℘15(u)℘34(v) + 1

24℘15(u)Q4555(v) − ℘23(v)℘25(u)
]
λ3

+
[−6Q1356(v)℘66(u) − 1

15Q3456(u)Q3566(v) − 4℘44(u)Q1556(v)

− 3
2Q1466(v)Q5566(u) + 3Q1266(u)℘66(v) + 1

2Q2366(u)℘36(v)

− 1
10Q2445(u)℘36(v) + 4Q1466(u)℘44(v) − 3

10℘33(u)Q3566(v)

+ 1
30Q2556(u)Q3566(v) − 4

3Q1444(u)℘66(v) + 32
3 ℘16(u)℘24(v)

+ 8
3℘16(u)Q4455(v) + 106

15 ℘16(u)Q3566(v) + 1
20Q2566(u)Q3556(v)

+ 3
2Q1556(u)Q5566(v)

]
λ2

4,

P18 = [
3

10Q2566(u)℘36(v) − ℘23(u)℘45(v) − 1
5Q2345(v) − 1

10Q3344(v)

+ 2
5℘12(u) + 3

4℘56(u)Q2366(v) + 1
24Q4555(u)℘25(v) + 4

3℘34(u)℘25(v)

− 1
24℘34(v)Q4555(u) − 2℘45(u)℘15(v) − 1

24℘55(u)Q3445(v)

+ 1
3℘55(u)℘14(v) + 1

6℘55(u)Q3366(v) − 3
5Q3556(u)℘36(v)

]
λ2

+
[

7
20Q2566(u)℘36(v) − 3

5Q3556(u)℘36(v) − 1
4Q3566(u)℘35(v)

− 2
3℘16(v)Q5566(u) − 1

6℘45(u)℘15(v) + 1
3℘23(u)℘45(v)

+ 2℘66(u)Q1556(v) + 2℘66(u)Q1466(v) + 4
3℘44(v)℘16(u)

]
λ4λ3

+
[
4℘66(u)Q1556(v) + 1

10Q2566(u)℘36(v) + 8℘16(v)Q5566(u)

+ 4℘66(u)Q1466(v) − 64
3 ℘44(v)℘16(u)

]
λ3

4,
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P14 = [
℘25(u)℘45(v) + ℘22(u) + 1

3Q3445(u) + 4
3℘14(v) + 5

12Q3366(v)

− 11
20Q3556(u)℘56(v) − 6℘44(u)℘26(v) + 3Q5566(v)℘26(u)

+ 18
5 ℘16(u)℘66(v) − 1

2Q4455(v)℘46(u) + 23
12Q3566(v)℘55(u)

− 1
24Q4555(u)℘45(v) − 27

10℘33(u)℘66(v) − 7
3℘24(u)℘55(v)

− 3
5Q3456(u)℘66(v) − 2℘24(v)℘46(u) + 2

3Q4455(v)℘55(u)

− 3℘35(u)Q5566(v) − 2
3℘34(u)℘45(v) − 11

2 ℘35(u)℘44(v)

+ 3
10Q2556(u)℘66(v) − 3

2Q3566(v)℘46(u) + 1
10Q2566(v)℘56(u)

]
λ1

+
[

1
24Q3566(v)℘55(u) + 1

6℘25(u)℘45(v) − 1
10Q3556(u)℘56(v)

+ 1
6℘34(u)℘45(v) − 1

20Q2566(v)℘56(u) − 1
30Q3366(v) − 1

15Q3445(u)

+ 8
15℘14(v)

]
λ4λ2 − 64

3 ℘16(v)℘66(u)λ4
4 + 68

3 ℘16(v)℘66(u)λ2
4λ3

− 32
3 ℘16(v)℘66(u)λ2

3,

P10 = [−2℘24(v) − 5
3Q3566(v) − 5

2℘44(v)℘55(u) + 5℘36(u)℘56(v)

− 1
24Q4455(v) − 5

2℘35(u)℘66(v) + 5
4Q5566(u)℘55(v)

]
λ0 +

[
4℘44(v)℘46(u)

+ 8
3℘24(v) + 18

5 ℘36(u)℘56(v) + 6℘26(v)℘66(u) − 11
2 ℘35(u)℘66(v)

+ 6℘44(v)℘55(u) − 3
2Q5566(u)℘46(v) + 7

3Q5566(u)℘55(v) − 5
3Q3566(u)

− 2
3Q4455(u)

]
λ4λ1,

P6 = 16
3 ℘66(u)℘55(v)λ3λ1 + 7

12Q5566(v)λ4λ0 − 4℘46(u)℘66(v)λ2
4λ1

− 4℘46(v)℘66(u)λ3λ1 + 5
2℘55(u)℘66(v)λ4λ0 − 6℘55(v)℘66(u)λ2

4λ1

− 3
2Q5566(v)λ3λ1 + 4

3℘44(v)λ4λ0 − 16
3 ℘44(v)λ2

4λ1 − 2Q5566(v)λ2
4λ1

+ 3℘44(u)λ3λ1,

P2 = 7
3℘66(u)λ4λ3λ1 − 3

5℘66(u)λ2λ1 − 16
3 ℘66(u)λ3

4λ1 + 4
3℘66(u)λ2

4λ0 − 2
3℘66(u)λ3λ0.
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[8] Eilbeck J C, Enolski V Z, Matsutani S, Ônishi Y and Previato E 2007 Abelian functions for trigonal curves of
genus three Int. Math. Res. Not. Art.ID: rnm140 (38 pages)
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